
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54252 1031

Software Testability in Requirement Phase:

A Review

Mohammad Zunnun Khan
1
, M.Akheela Khanam

2
, M.H.Khan

3

Research Scholar, Computer Science & Engineering, Integral University, Lucknow, India 1

Associate Professor, Computer Science & Engineering, Integral University, Lucknow, India 2

 Professor, Department, Computer Science & Engineering, I.E.T., Lucknow, India 3

Abstract: Testability can be used as a high impact quality indicator in the modern era of software development

process. The complete process of testability always helps the developer by its correct measurement or
evaluation. But its correct evaluation is not an easy task for the practitioners. Practitioners as well as researchers

have always suggested that testability should be considered as a primary attribute towards achievement of

quality software process. Software quality’s accurate measure depends on testability measurement, and as an outcome

estimating efforts in measuring testability is a complex problem that requires considerable attention of researchers.

Primary objective of this review report is to raise the testability issues with the limitation and to

investigate the general testability factor and minimal set of commonly accepted testability factors, and proposing

a conceptual comparative evolution. Here we review the literature to gain wide knowledge of testability and its

quality factors and measurement presented by various researchers in different perspective.

Keywords: Software Development, Software Testability, Software Requirement, Software Quality

I. INTRODUCTION

Professionals of Software development life cycle has

broadly focus on minimizing errors, detecting and

correcting software faults that occurs during development

life cycle, and try to deliver a high quality software after

the software development process[24]. But only delivering

high quality software is no longer just an advantage but it

is also a necessary factor. But most of the industries

are not able to deliver a high quality product to their

stakeholders, and also do not understand quality attributes

those are relevant [18, 2]. Software testing is the main
activity in complete process of development it is also true

that it consumes major proportion of time and effort.

There is a need of an approach which performs

testing accurately. Software testability always supports

the testing process and facilitates the development of

highly quality software within time and budget [1].

If there is an effective testability plan for the development

process is possible at an early stage i.e., requirement

phase. May delivery a high quality software product

and satisfy users [3]. It will reduce the overall
maintenance cost and rework. However, less effective

testability plan or later stage testability plan of

development process will lead to unsatisfied users, low

quality product, unreliability and inaccuracy towards

results [4].

II. SOFTWARE TESTABILITY

Various definitions of testability are available. Common

and most effective is the ease of performing testing [23].

The above mentioned definition has its roots in hardware

testing which is usually expressed by the two

terms one observability [22] and another is controllability.

Binder has defined these factors of testability as [10], if

you are able to control its input state, i.e. internal state and

observer the output state, to test a component. And if you

are not able to control input, you cannot be so sure on

output. Based on the given definitions, it is intuitive how

controllability and observability ease of testing and reduce

its cost. If controllability is missing redundant tests
will produce different results, and in absence of

observability, incorrect results may appear correct as the

error is contained in an output that you are unable to see

[7, 17].

Voas mentioned that only controllability and observability

cannot represent all the cost of testing yet they are part of

the testability [9, 12]. A primary component is the ability

to revel faults of testing. Testing has least value if a testing

activity fails to identify the problem that exists. This value

definition testability tries to measure the accurate amount
of effort necessary to adequately test the component or

complete system such that all faults are traced.[6,8] Our

research in software testability at an early stage has yield

evidence that there is a correlation between low testability

and object oriented approach (in requirement phase).

III. SOFTWARE REQUIREMENT

Traditionally, software requirements are either functional

or non-functional with hidden notation of quality in the

latter stage. As the focus of industry professional is

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54252 1032

shifting from functionality to improving quality [11, 15], a

new type of requirements focused on quality is emerging.

In order to specify these new quality requirements,

quality itself must be defined. A quality model provides

the framework towards a definition of quality.

Practitioner has long recognised that in order for

something to find its way in a final product, it is must to

define and specify it properly. Regrettably, the software

quality that can be observed in the industry today is

missing a solid foundation in the form of an agreed upon

the quality model that can evaluate and specify the quality
of software.

Bourque (2000) has advised that the implementation of

quality software products is a series of action in formal

manner should be managed through the software

engineering life cycle [25]. The implementation of

quality software should therefore begin with specifying the

quality requirement of users. Suryn (2003) has advised

that this domain as combination of an uninterrupted,

systematic, disciplined and quantifiable approach for

the development and maintenance of quality software
product & system [21].

IV. TESTABLE REQUIREMENT

The main measure of success of software is the degree to

which it meets the purpose for which it was built. The

requirement engineering is the way of discovering that

purpose, by identifying needs of stakeholders and

documenting these in a form that is amenable to

analysis, communication, and able for subsequent

implementation [31]. It is decision of developer that how

to implement the given requirement. According to a high
quality requirements document must satisfy these quality

parameters [30].

 Correct— a requirement statement must accurately

describe the functionality to be delivered product and

customer is the most superior authority to determine the

correctness of the requirement.

 Unambiguous— a requirement statement should be able

to draw only one meaning to the reader.

 Complete— a requirement statement must contain all

the necessary information and convey complete.

 Consistent—a requirement statement should not conflict

with any other requirements. Any Disagreements among

requirements must be resolved before the development

process starts.

 Verifiable—a requirement statement that is

unambiguous is verifiable. And the person who uses it

must be able to determine if the requirement statement

have been met.

 Ranked for importance and stability- a requirement

statement must have an implementation priority

according to its importance.

 Modifiable- a requirement statement that is modifiable
must be cross referenced and uniquely ladled, so it can

be changed without any difficulty.

 Traceable- a requirement statement that is traceable, it

should be possible to trace each requirement to its

source.

 Understandable- a requirement statement should be

grammatically correct and written in a consistent style.
Standard conventions should be used.

A Testable Requirement is a consistent, unambiguous

description of the expected system behaviour that is

verifiable.

V. RELATED WORK

Software industry calls for a formal management of

quality throughout the lifecycle [2]. To achieve this

requirement, a quality model should support the definition
of quality requirement and its subsequent evaluation.

This can be expressed by referring to the

manufacturing view of quality, which express that

quality is conformity to requirements. A base quality

model that used for the definition of quality requirements

will definitely help in both the specification of quality

requirement and the evaluate software quality.

IEEE Std 1061-1998 [28], defines this as a top-down

and bottom-up approach to quality: its top-down view

suggested the framework that establish the quality
requirements factors for the users and managers early

in software development lifecycle, communication of

well established quality factors, in form of quality sub

factors to the professionals and identify the metrics that

are related to established quality factors and sub factors.

And its bottom-up view suggested the framework that

enables the managerial and technical professionals to

obtain feedback by evaluating the software product and

processes, at the metrics level & analysing metric values

to assess and estimate the quality factors. A quality model

that can be used as the structure for the definition of

quality requirements should help the industry

professional in both specification of quality

requirement and evaluation of software quality [27, 29].
Or we can say that it should be usable from top of

development process to bottom and it’s vice versa.

Three parameters that a quality model must possess to be a

foundation for software development lifecycle have been

identified; a quality model must support five perspective

of quality as defined by Kitchenham and Pfleeger [19, 25],

a quality model must be as much as usable from top to

down of the lifecycle according to IEEE Std 1061-1998

[30],i.e. it should allow for defining quality requirements

and its further decomposition into quality characteristics,
sub characteristics, a quality model must be usable from

bottom to up of the lifecycle as defined by IEEE,1998, i.e.

should allow for required measurement and aggregation

and evaluation.

As Davis (1993) states and illustrates that a set of

requirements is correct when each and every requirement

stated in it represents something in the derived system. If

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54252 1033

the universe of user needs is represented by the circle on

the left and the requirements by the circle on the right, the

portion of correct requirements is area B, the area of

overlap. Of course, by simply writing some information in

a document, anyone can not guarantee that it is correct

and can any automated design tool provide a

guarantee that it will be correct.

 REQUIREMENT SPECIFICATION AND EVALUATION OF

QUALITY

Software industry calls for a formal management of
quality throughout the lifecycle [2]. To achieve this

requirement, a quality model should support the definition

of quality requirement and its subsequent evaluation. This

can be expressed by referring to the manufacturing view of

quality, which express that quality is conformity to

requirements. A base quality model that used for the

definition of quality requirements will definitely help in

both the specification of quality requirement and the

evaluate software quality.

IEEE Std 1061-1998 [28], defines this as a top-down
and bottom-up approach to quality: its top-down view

suggested the framework that establish the quality

requirements factors for the users and managers early

in software development lifecycle, communication of

well established quality factors, in form of quality sub

factors to the professionals and identify the metrics that

are related to established quality factors and sub factors.

And its bottom-up view suggested the framework that

enables the managerial and technical professionals to

obtain feedback by evaluating the software product and

processes, at the metrics level & analysing metric values

to assess and estimate the quality factors. A quality model
that can be used as the structure for the definition of

quality requirements should help the industry

professional in both specification of quality

requirement and evaluation of software quality [27, 29].

Or we can say that it should be usable from top of

development process to bottom and it’s vice versa.

Three parameters that a quality model must possess to be a

foundation for software development lifecycle have been

identified; a quality model must support five perspective

of quality as defined by Kitchenham and Pfleeger [19, 25],
a quality model must be as much as usable from top to

down of the lifecycle according to IEEE Std 1061-1998

[30], i.e. it should allow for defining quality requirements

and its further decomposition into quality characteristics,

sub characteristics, a quality model must be usable from

bottom to up of the lifecycle as defined by IEEE,1998, i.e.

should allow for required measurement and aggregation

and evaluation.

As Davis (1993) states and illustrates that a set of

requirements is correct when each and every

requirement stated in it represents something in the
derived system. If the universe of user needs is represented

by the circle on the left and the requirements by the circle

on the right, the portion of correct requirements is area B,

the area of overlap. Of course, by simply writing some

information in a document, anyone can not guarantee that

it is correct and can any automated design tool

provide a guarantee that it will be correct. If the user’s

true requirements in a shopping system are that on item A

has 5 percent discount and item B has 8 percent discount

but the project team inadvertently creates a requirement

stipulating a 8 percent discount on item and A and 5

percent on item B, so it is sure that it is not correct. This

form of correctness will be verified only by review and

acceptance by the stakeholders.

As IEEE 830-1993-1994[26] stated that a set of

requirements is unambiguous when it can be interpreted

only in one aspect. Although correctness of requirement is

obviously a key concern, sometimes ambiguity can turns

out to be a big problem. If a statement of requirements can

be interpreted differently by developers, users, and other

stakeholders in the project, it's quite possible to build a

system that is completely different from what the user had

in mind. This is because of , an insidious problem

whenever requirements are written in natural language, as
well as because different cultural groups within an

organization are so accustomed to their interpretation of a

word or phrase that it never occurs to them that others

might interpret the word differently.

A set of requirements is complete if the statement

describes all significant requirements of concern to the

user, including those requirements which are

associated with functionality, performance, design

constraints, attributes, or any other external interfaces

[26]. A complete set of requirements must also define the

required response of the software to all realizable classes
of inputs including valid and invalid situations of all

realized classes. So, it must provide complete references

and labels for all of the figures, tables, and diagrams

within the requirement set.

Ensuring Completeness some aspects of completeness can

be judged by experienced reviewer who critically assesses

the requirements that ensures the figures, labels, and

diagrams have proper references and labels. Also, some

aspects of completeness can be assessed even by a

developer with no special understanding of the
application. A requirement set is internally consistent if

and only if no subsets of individual requirements

described within it are in conflict with one another [26].

The conflicts can take various forms and are visible at

various levels of detail, if the set has been written in a

reasonably formal fashion and if it is supported with

appropriate automated tools, the conflicts can sometimes

be identified through a mechanical analysis. [5]

A requirement is verifiable in the aggregate if each

component requirements contained within it is verifiable.
And the requirements can be deemed verifiable if and only

if there exist a finite, cost-effective process with which a

person or a machine can determine that the developed

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54252 1034

software system meets the requirement [26]. In short, we

realize, as a professional that it is necessary to define

requirements so that we can later test them and determine

whether they were achieved. .

McCall (McCall et.al, 1977) [13] firstly introduced a

quality model in the year 1977. Pfleeger et.al, 2001, has

also stated it as a first model and shows the mapping of

those quality factors that are not directly measurable on

one side and on other end measurable properties on the

basis of subjective grading scheme [16]. Regarding this
model, pressman, 2001 has noted that unfortunately, most

of the properties measured by McCall et.al. , are only

measured subjectively, so it is difficult to use this

framework for specifying quality requirements, as

traceability and self documentation are not meaning full

at an early stage for nontechnical users. And will not

fulfil the criteria of IEEE standard for software quality

metrics.

Boehm [14] improves the work of McCall and proposed a

model; this model loosely retained the measurable
property arrangement. According to Boehm the prime

quality characteristic is what they defined as general

utility. They considered the maintainability, utility and

portability useful for the system. This characteristics

General Utility and as-is Utility are too generic to be

useful for defining requirements which can be verifiable.

Like the McCall model, this model is mostly useful for a

bottom-up approach to quality of software i.e. it can

effectively be used to define measures of software quality.

While this model is a step forward in the sense that it

provides basic support for a top-down approach to

software quality, this support is too short to be considered
as a solid base for quality engineering.

Dormey [15], 1995 model has selected a new path towards

software quality then existing ones (McCall and

Bohem). This quality model was based on the product

quality perspective, shows that what must be recognized in

a quality model. In place of it exhibits product

characteristic that contribute to quality attributes and other

characteristics that can detract from the quality attributes

of a product. Most models of software quality fail to deal

with the product characteristics side of the problem
adequately and it also fails to make the direct links

between quality attributes and corresponding

characteristics of product. He has suggested an evaluation

based quality framework that is able to analyze the

quality of software components through the

measurement of quality properties that are Capable of

being perceived. Each and every end produced in the

software development lifecycle can be associated with an

evaluation model based on quality.

Dromey’s work was significant for both technical

team and stakeholders, but it was still a difficult task
to implement, how it could be used at an early stage of

development process. So it fails to qualify as a foundation

for Software Quality Engineering according to the

established requirements. In the year 1991, the ISO has

introduced as standard named ISO/IEC 9126[20]; software

product evaluation, quality based characteristics and set of

rules for their best use. It also targeted to define a quality

model for software product and a set of specific guidelines

for the measurement of associated characteristics.

ISO/IEC-9126 [20] was very popular in Europe as the

best way to measure quality of software product as

Bazzana et.al. 1993 stated it. But there were some

problems such as it has no specific guidelines on how to

provide a quality assessment and no indication on how to
perform the measurement of quality; it only reflects the

consumer view as stated by Pfleeger, 2001 [21] .

FRUPS model was firstly presented by Grady [32], and

then it is extended by IBM Rational Software [33 and 34]

into FURPS+. The ―+’’ symbol indicates such

requirement set as design constraints, implementation

of requirements, interface of requirements and physical

requirements [33].

On these four characteristics FURPS model is defined as
follows:

• Functionality – This includes feature sets, capabilities

and security.

• Reliability – This includes frequency and severity of

failure, recoverability, predictability, accuracy, and
mean time between failures (MTBF).

• Usability – This includes human factors, aesthetics,

consistency in the user interface, online and context

sensitive help, wizards and agents, user documentation,

and training materials.

• Performance – This imposes conditions on functional

requirements such as speed, efficiency, availability,

accuracy, throughput, response time, recovery time, and

resource usage.

• Supportability – this includes testability, extensibility,

adaptability, maintainability, compatibility,

configurability, serviceability, installability,

localizability.

It can be categories in two different types: Functional

(F) and Non-functional (URPS) [17]. These categories

also help us as both product requirements as well as in the
assessment of product quality.

VI. CRITICAL OBSERVATIONS

After revisiting the approaches of researches some

important observation can be specify as follows:

 If we improve quality of software at an early stage that

is requirement phase then the overall process may

greatly improve. It will improve client satisfaction and

reduce cost and effort.

 This study provides that requirement errors are the most

common category of systems development errors. If we

control error at the requirement phase, the delivered

product will surely be improved.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54252 1035

 Testability is a quality factor which is commonly

accepted by various quality models.

 As suggested by various researchers defect potential is

high as well as efficiency to remove effort is also very

significant in the requirement phase of software
development lifecycle.

If we are able to achieve testable requirement then we can

avoid redesign, recode and retest at later stages of

development.

VII. CONCLUSION

Various frameworks have been proposed in the literature

for measuring software testability. A survey of the relevant

literature shows that maximum efforts have been put at the
later stage of software development life cycle. If

requirement based errors can be fixed quickly, easily,

and economically, project in later stages of

development may not have a huge problem. Although the

studies of this review, all reached roughly the same

conclusion: If a unit cost of one is assigned to the effort

required to detect and repair an error during the coding

stage, then the cost to detect and repair an error during the

requirements stage is between five to ten times less. And

the cost to detect and repair an error during the

maintenance stage is twenty times more. At last study can
conclude that testability is a quality factor that attempts to

predict how much effort will be required for software

testing process.

REFERENCES

[1] S. Mouchawrab et al, ―A measurement framework for object-

oriented software testability,‖ Carleton University, Technical

Report, SCE-05-05, year 2005.

[2] Testability Estimation Model: M. Nazir & R.A.Khan, Lecture

Notes of the Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering, Vol. 85, Meghanathan,

Natarajan; Chaki, Nabendu; Nagamalai, Dhinaharan (Eds.),

Volume 85, Part 3, LNICST, Springer-Verlag, 2012, pp 178-187,

(ISBN 978-3-642-27307-0). January 2012.

[2] Nazir M., Khan Raees. A.,‖ An Empirical Validation of

Understandability Quantification Model‖, Journal Procedia

Technology, 2nd International Conference on Computer,

Communication, Control and Information Technology, Volume 4,

Pages 772–777, 2012.

[3] Improving the Testability of Object-oriented Software during

Testing and Debugging Processes, Sujata Khatri, R.S. Chhillar,

V.B.Singh, International Journal of Computer Applications (0975 –

8887) Volume 35– No.11, December 2011.

[4] A. Zaidman et. al, ―On how developers test open source software

systems‖, Technical Report TUD-SERG-2007- 012, Delft

University of Technology, Software Engineering Research Group,

2007.

[5] Abdullah, Dr. Reena Srivastava, Dr. M.H. Khan International

Journal of Advanced Information Science and Technology (IJAIST)

ISSN: 2319:2682 Vol.26, No.26, June 2014

[6] L. Zhao, ―A new approach for software testability analysis‖,

International Conference on Software Engineering, Proceeding of

the 28th international conference on Software Engineering,

Shanghai, pp. 985–988, 2006.

[7] Voas and Miller, "Software Testability: The New Verification".

IEEE Software, Vol. 12(3), p. 17-28, 1995.

[8] J.M. Voas, "Object-Oriented Software Testability", In proceedings

of International Conference on Achieving Quality in Software,

January 1996.

[9] R.V. Binder, "Design for testability in object-oriented systems‖,

Communications of the ACM Vol. 37(9), p. 87-101, 1994.

[10] M. Nazir, Khan R. A. & Mustafa K. (2010): Testability Estimation

Framework, International Journal of

Computer Application, Vol. 2, No. 5, pp.9-14. June 2010.

[11] Voas and Miller, Semantic metrics for software testability, Journal

of Systems and Software, Vol. 20 (3), pp. 207-216, 1993.

[12] McCall JA, Richards PK, Walters GF. Factors in software quality,

RADC TR-77-369: 1977. (Rome: Rome Air Development Centre)

[13] Boehm BW, Brow JR, Lipow M, McLeod G, Merritt M.

Characteristics of software quality, North Holland Publishing,

Amsterdam, the Netherlands; 1978.

[14] Dromey RG. Concerning the Chimera (software quality). IEEE

Software. 1996; 1:33.

[15] Drown DJ , Khoshgoftaar TM, Seiya N. Evaluation any

sampling and software quality model of high assurance systems,

IEEE Transaction on systems, Mean and Cybernetics, Part A:

Systems and Human. 2009;39(5):1097-1107.

[16] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Evaluating

Effectiveness Factor of Object Oriented Design: A Testability

Perspective. International Journal of Software Engineering &

Applications (IJSEA), 6, 41-49.

http://dx.doi.org/10.5121/ijsea.2015.6104

[17] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Testability

Quantification Framework of Object Oriented Software: A New

Perspective. International Journal of Advanced Research in

Computer and Communication Engineering, 4, 298- 302.

http://dx.doi.org/10.17148/IJARCCE.2015.4168

[18] Krruchtem P. The rational unified process: an introduction,

Addison Wesley; 2000.

[19] ISO /IEC25010: Software engineering– system and software

quality requirement and evaluation (SQuaRE)- system and

software quality model; 2011.

[20] Esaki K. System quality requirement and evaluation,

importance of application of the ISO/IEC 25000 series, Global

Perspectives of Engineering Management.2013; 2(2):52-59.

[21] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Metric Based

Testability Estimation Model for Object Oriented Design: Quality

Perspective. Journal of Software Engineering and Applications, 8,

234-243. http://dx.doi.org/10.4236/jsea.2015.84024

[22] Robert V. Binder. Testing object-oriented systems: models,

patterns, and tools. Addison-Wesley Longman Publishing Co., Inc.,

1999.

[23] Huda, M., Arya, Y.D.S. and Khan, M.H. (2014) Measuring

Testability of Object Oriented Design: A Systematic Review.

International Journal of Scientific Engineering and Technology

(IJSET), 3, 1313-1319.

[24] Krruchtem P. The rational unified process: an introduction,

Addison Wesley; 2000.

[25] Addison Wesley - Leffingwell & Widrig-Managing Software

Requirements, 1St Edition.

[26] IEEE Computer Society. IEEE Standard 8301998: IEEE

Recommended Practice for Software Requirements Specifications.

New York City: IEEE.

[27] S. Wright. Requirements traceability - what? why? and how? In

Proc. IEE Colloquium on ―Tools and Techniques for Maintaining

Traceability During Design‖, pages 1–2. IEEE, 1991

[28] IEEE Standard 1233a1998: IEEE Guide for Developing System

Requirements Specifications. New York City: IEEE

[29] Spence, I. and Probasco, L. (2000), Traceability strategies for

managing requirements with Use cases, Rational Software White

paper.

[30] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Quantifying

Reusability of Object Oriented Design: A Testability Perspective.

Journal of Software Engineering and Applications, 8, 175-183.

http://dx.doi.org/10.4236/jsea.2015.84018

[31] Grady R B., Practical software metrics for project management and

process improvement, Prentice Hall; 1992.

[32] Jacobson I, Booch G, Rumbaugh J. The unified software

development process, Addison Wesley; 1999.

http://dx.doi.org/10.5121/ijsea.2015.6104
http://dx.doi.org/10.17148/IJARCCE.2015.4168
http://dx.doi.org/10.4236/jsea.2015.84024
http://dx.doi.org/10.4236/jsea.2015.84018

